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Abstract. Sulfur dioxide (SO2) is an important air pollutant that contributes to negative health effects, acid rain, and aerosol
formation and growth. SO, has been measured using ground-based air quality monitoring networks, but the routine
monitoring sites are predominantly placed in urban areas, leaving large gaps in the network in less populated locations.
Previous studies have used chemical transport models (CTMs) or machine learning techniques to estimate surface SO
concentrations from satellite vertical column densities, but no direct comparisons between the methods have been made. In
this study, we estimated surface SO, concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China
from 2015-2018 utilizing GEOS-Chem simulations and an extreme gradient boosting machine learning model. Compared to
the in situ measurements, the SO, concentrations estimated from the CTM method had similar spatial distributions (r = 0.58)
and intra- and interannual variations but were underestimated (slope = 0.24) with a relative percent error of ~75% and had
worsening performance over time. The machine learning method produced more accurate spatial distributions (r = 0.77) and
temporal variations, a smaller discrepancy and bias (~30%; slope = 0.69) and relatively stable performance over time. The
machine learning method performed better than the GEOS-Chem method on smaller datasets and timescales with shorter
temporal averaging periods. Ultimately, both methods were useful for estimating surface SO, concentrations since the CTM-
based method does not rely on in situ monitoring and produced more reasonable spatial distributions than the machine

learning method over areas without surface monitoring data.

1 Introduction

Sulfur dioxide (SO>) is an important air pollutant due to its effects on human health, air quality, weather, and
climate. SO, has many anthropogenic sources such as fossil fuel combustion in power plants and ore smelters, as well as
natural sources from volcanoes (Engdahl, 1973). Surface SO, concentrations are mainly driven by anthropogenic activity in
urban areas and are known to cause cardiovascular and respiratory health impacts (Engdahl, 1973; Krzyzanowski &

Wojtyniak, 1982). SO, readily undergoes oxidation reactions in the atmosphere to form sulfuric acid, which contributes to
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acid rain (Seinfeld and Pandis, 2016) and participates in aerosol formation and growth (Lee et al., 2019), leading to further
effects on weather and the global energy budget (NASEM, 2016).

Concentrations of SO, at the surface have been measured using ground-based air quality monitoring networks.
Surface concentrations are measured on hourly to daily time intervals, but the sites are predominantly located in urban areas,
leaving large gaps in the network elsewhere. Satellite-based instruments can measure total-column concentrations of SO
globally. These SO, vertical column densities (VCDs) are retrieved using the absorption of backscattered solar radiation in
the ultraviolet wavelengths measured by a spectrometer (e.g., Krotkov et al., 2008; Levelt et al., 2006; Li et al., 2013; Li et
al., 2020a; Nowlan et al., 2011; Theys et al., 2015). The VCDs are typically available over cloud-free locations over large
areas on a daily basis but do not directly provide the surface concentrations. Additional tools are required to estimate the
surface concentrations from the satellite-retrieved VCDs as discussed below.

The first method is to use chemical transport models (CTMs) to convert satellite VCDs into surface concentrations
using simulated surface-to-VCD ratios (SVRs). This method was initially developed for estimating surface PM,s from
satellite-based aerosol optical depth retrievals (Liu et al., 2004) and was later applied to nitrogen dioxide (NO»; Lamsal et al.,
2008) and SO, (Lee et al., 2011). Lee et al. (2011) and Zhang et al. (2021) used coarse-resolution CTMs (grid spacings on
the order of 100 km) to convert SO, VCDs from the Ozone Monitoring Instrument (OMI) into surface concentrations over
North America for 2006, and China for 2005-2018, respectively. McLinden et al. (2014) and Kharol et al. (2017) used
higher-resolution CTMs (grid spacing on the order of 10 km) and OMI VCDs to estimate the surface concentrations with
focuses on the Canadian oil sands from 2005-2011, and North America from 2005-2015, respectively. These studies
demonstrate that annual mean satellite-derived surface SO concentrations accurately capture the spatial distribution from the
ground-based air quality monitoring network, despite the estimated surface concentrations being generally underestimated.
An advantage of the CTM method is that it is based on fundamental principles of atmospheric dynamics and chemistry and
can produce results that are independent of observed surface concentrations. The main limitations of CTMs are the
computational expense of running the simulations (Fan et al., 2022) and coarse-resolution simulations may have large biases
due to emissions, meteorology, and chemical processes (Wang et al., 2020b; Wang et al., 2020c).

More recently, machine learning (ML) techniques have been used to estimate surface SO, concentrations from
satellite retrievals, meteorology, and other variables such as emission inventories and land use types. Zhang et al. (2022)
used a Light Gradient Boosting Machine (LightGBM) to estimate surface SO, concentrations over northern China using
OMI SO, VCDs, meteorological variables, emissions, land use classifications, population density, and others. Yang et al.
(2023a) used radiances from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate the
surface concentrations of SO, and other criteria air pollutants in a multi-output random forest model. Both studies showed
that ML techniques can accurately capture the spatial distribution and magnitude of the surface concentrations but had
artificial biases due to nonphysical links between variables and the surface concentrations, such as interactions between
certain land use types and skin temperature as shown by Zhang et al. (2022). In these studies, the ML models also

incorporate spatial (e.g., longitude, latitude, population density) and/or temporal (e.g., numeric day of year, hour of day)
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proxies to improve performance, but this can lead the model to learn the locations of cities and introduce an artificial
seasonality rather than depending on measurable quantities, limiting the physical usefulness and interpretability of the model
(Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). ML models are typically much faster to train and run than a full
CTM simulation and can often utilize higher resolution data (Fan et al., 2022). Since ML models can only use statistical
relationships to make predictions, they are often limited in their physical interpretability.

Although the CTM and ML methods have both been employed in estimating surface SO, concentrations from
satellite retrievals, so far there has been a lack of direct comparisons between the two methods. Here, we estimated surface
SO2 concentrations using OMI VCDs over eastern China (105-125°E, 25-45°N) from 2015-2018 to directly compare the
two methods. First, we used the relationship between the surface and total column concentrations simulated by GEOS-Chem
to estimate surface SO, concentrations from the satellite data. Then, we used a ML model to predict surface SO,
concentrations from OMI VCDs, meteorological variables, and an emission inventory, which are all physically relevant to
the spatial distribution or lifetime of SO,. The results from each method were validated against ground-based in situ
measurements from the China National Environmental Monitoring Centre (CNEMC) air quality monitoring network.
Finally, we compared the performance of each method on an identical dataset for the first time to gain insights on their

abilities and limitations to accurately estimate the surface SO, concentrations.

2 Data and methods
2.1 Study region

Eastern China has abundant anthropogenic SO, emissions and thus is a region with elevated surface concentrations.
A map of our study region with the locations of OMI-derived SO, emission sources (Fioletov et al., 2022) and CNEMC
monitoring sites in the study region are shown in Fig. 1. The largest sources of SO in the study region come from 70 power
plants, as well as five ore smelters and one area of oil and gas production (Fig. 1b). There are also approximately 1000
stations located across the region that can be used to validate the estimated surface concentrations from the satellite data
(Fig. 1c). Our analysis covers the period from 2015 (the first full year of in situ measurements) to 2018 (to avoid the impacts
of the COVID-19 lockdowns).
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Figure 1: Maps showing the (a) study region (solid box; 105°E - 125°E, 25°N - 45°N) relative to the rest of the Asian continent, (b)
locations of large SOz sources from the OMI emission catalogue during 2015 (Fioletov et al., 2022) including 70 power plants
(stars), five ore smelters (triangles), one area of oil and gas production (square), and (c) locations of the CNEMC monitoring
stations (circles).

2.2 OMI satellite data

We employed data from the Ozone Monitoring Instrument (OMI; Levelt et al., 2006), a hyperspectral
ultraviolet/visible nadir solar backscatter spectrometer launched onboard the Aura satellite in 2004. Aura flies in a sun-
synchronous polar orbit, and OMI is used to retrieve SO, VCDs with daily global coverage and a spatial resolution of 13 km
X 24 km at nadir, a significant improvement from previous satellite-based instruments. The OMI overpass time of our study
region ranges from approximately 12:15 pm to 2:45 pm local time. For both methods, we used the OMI Planetary Boundary
Layer (PBL) SO, product to estimate the surface concentrations due to its main application for anthropogenic, near-surface
SO, (Krotkov et al., 2014; Li et al., 2020b). The OMI retrievals use a principal component analysis- (PCA) based algorithm

for spectral fitting based on the radiances of wavelengths between 310.5-340 nm for each row in the measurement swath (Li
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etal., 2013; Li et al., 2020a). This version of the PCA retrievals include pixel-specific air mass factor calculations to convert
slant column densities (SCDs) to VCDs rather than using a fixed value worldwide (Li et al., 2020a). The VCDs express the
number of SO, molecules in the column and are reported in Dobson Units (DU; 1 DU = 2.69 x 10'® molecules cm). To
ensure good data quality, we gridded the data to 0.25° x 0.25° resolution and screened out measurements with cloud
fractions greater than 0.3, solar zenith angles greater than 65°, located in the outer ten cross-track positions, or affected by
the row anomaly (NASA, 2020). We also excluded extreme outliers that fell outside of five standard deviations from the

mean as thresholds less than this appeared to remove legitimate data.

2.3 CNEMC ground-based monitoring data

Ground-based SO, concentrations from the China National Environmental Monitoring Centre (CNEMC) air quality
monitoring network were used to validate the performance of each method. The concentrations were converted from pg m3
to parts per billion (ppbv) following the procedure outlined in Wei et al. (2023). To ensure the ground-based measurements
were temporally aligned with the OMI overpass, we averaged the hourly concentrations from 12:00 pm to 3:00 pm local time
on days where there was at least one OMI observation within 40 km of the station. Like the OMI data, we also removed data

that fell more than five standard deviations outside of the mean.

2.4 GEOS-Chem technique

We used simulated SVRs from the GEOS-Chem model (v14.2.2; Bey et al., 2001) to convert the OMI VCDs into
surface concentrations for the CTM-based method. We conducted simulations for January, April, July, and October 2015
each with a one-month spin-up to represent the SO profiles in different seasons. To reduce the computational expense, we
used the monthly average SVR from each simulation to estimate the surface concentrations in the corresponding winter
(DJF), spring (MAM), summer (JJA), and autumn (SON) months for all years of the study period. The model was run at a
resolution of 2.5° x 2.0° with 47 vertical layers and was driven by assimilated GEOS-FP meteorology (Lucchesi, 2018) and
the Community Emissions Data System (CEDS) emission inventory (Hoesly et al., 2018). The internal time steps for the
chemistry and advection calculations in the model were lengthened by 50% from the default values to reduce simulation
times while minimizing errors (Philip et al., 2016). We used model output at the lowest model level (~60 m above ground
level) at 2:00 pm local time, the only output timestep inside the OMI overpass window. We only included GEOS-Chem data
in the analysis if there was at least one valid OMI observation within the model grid cell on a given day.

The approach from Lee et al. (2011) was used to infer surface SO, concentrations from OMI VCDs using the

GEOS-Chem (GC) simulated SO, profiles. The conversion was done using the following relationship:

vSGgc
Syt = —255¢___» )
oMI oMI
vQGc,PBLFGCFT ’

where S is the surface SO» concentration in ppbv and Q is the SO, VCD in DU. The FT and PBL subscripts are the free-
tropospheric and boundary layer VCDs, respectively, which were calculated relative to the GEOS-FP PBL height. Since
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there is a significant difference in resolution between the satellite and model data, OMI VCDs were used to provide sub-

model grid variability (v) using:

— Lomr )

Qomr’
where Qomi is the OMI VCD at 0.25° resolution and Q'om is the average OMI VCD over the 2.5° x 2.0° GEOS-Chem grid
cell. To compare the estimated concentrations to the in situ surface monitoring data, we used a 40 km averaging radius
around each station to increase the amount of usable data and reduce noise in the OMI data. Since this method does not
require prior knowledge of in situ measurements, the analysis in Sect. 3.1 will be performed over the full dataset.

One simplification of our approach is to use January, April, July, and October simulations for a single year (2015)
to estimate the surface SO, concentrations over the entire study period. To evaluate this approach, we first compared the
GEOS-Chem and OMI SO, VCDs. We found that there was no significant change in the correlation between them from
2015-2018 (Fig. S1). This indicates the spatial distributions remained similar, and the model can distinguish between
relatively polluted and unpolluted areas, and thus, the SVRs in those environments. We also ran four additional GEOS-Chem
simulations for January, April, July, and October 2018 to assess the year-to-year changes in the SVR. The slopes in Fig. S2
indicate that the monthly average SVR does not have a systematic change from 2015-2018 and has a maximum discrepancy
of 13%. Since the spatial distribution of SO, and simulated SVRs remained relatively constant over time, we believe this

simplification made to reduce computational expense will not have a significant impact on the results.

2.5 Machine learning technique

To estimate the surface concentrations using a ML model, we used an eXtreme Gradient Boosting regression model
(XGBoost; Chen & Guestrin, 2016) to statistically relate satellite-based SO, VCDs, meteorological variables, and emissions
data to the in situ measurements. XGBoost models use a scalable tree boosting system to efficiently train an ensemble of
decision trees by adding a new tree with each training epoch and learning with each iteration (Chen & Guestrin, 2016;
Friedman, 2001). We trained the model with an ensemble of 500 trees with a maximum tree depth of 15 splits, and a learning
rate of 0.15 on a mean squared error loss function. Using an ensemble with more trees did not improve the performance of
the model, and using a depth of 15 splits was found to be the best balance between overfitting and underfitting during
training.

Our ML model was trained on a small number of variables (five) that each have known physical relationships to the
spatial distribution or lifetime of SO,. By using a small number of variables, it is easier to derive physical meaning from the
ML predictions without sacrificing accuracy since the input variables are already known to affect surface SO,
concentrations. First, we used daily OMI SO, VCDs to estimate the spatial distribution of SO,. Next, we used hourly 100 m
u-wind, 100 m v-wind, and PBL height (PBLH) averaged over the OMI overpass window from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERAS5; Hersbach et al., 2020; ECMWF, 2019) to account for

the meteorological mixing and dispersion of SO,. Finally, we used monthly SO, emissions from the CEDS inventory to
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capture the known locations of SO, sources. We trained the model on logarithmic emissions since the values ranged several
orders of magnitude, and logarithmic boundary layer heights to get better sensitivity to variations in low boundary layers.
The model can be summarized as:

Smur = XGBoost(Qom;, Ugras) Veras, 10810 [PBLHgras] 10810 [Eceps)), 3
where Sw is the predicted surface concentrations from the XGBoost ML model, Qowm is the satellite SO, VCD, Ugras is the
u-wind, Veras is the v-wind, PBLHeras is the boundary layer height, and Eceps is the SO, emissions.

We trained the model on 90% of the daily data (N = 137630) from 2015 to 2018 with meteorology and emission
variables sampled to match the OMI observations. The input variables were averaged within 40 km of the CNEMC sites for
training, as done in the GEOS-Chem method. The remaining 10% of the data (N = 15292) was reserved for a sample-based
independent validation, as done in previous studies (e.g., Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). Figure 2
shows that the model had better performance with the training data (slope = 0.89; r = 0.95) compared to the testing data
(slope = 0.67; r = 0.76), indicating that the model has good performance, but is slightly overfitting, a common artifact of
complex machine learning models such as XGBoost.

(a) Independent dataset (b) Training dataset

70 y = 0.67x + 2.56 o 70 y = 0.89x + 0.82
R = 0.76 N = 15292 s R = 0.95 N = 137630 ’

D) 60 | MAE = 2.9 ppbv e LS 60 | MAE = 1.2 ppbv
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Figure 2: Scatterplots between the daily ML model predictions and CNEMC in situ measurements for the (a) independent dataset
and (b) training dataset. Each panel includes a linear regression analysis with best fit line (solid line) and discrepancy statistics for
the estimated surface SO concentrations compared to in-situ measurements. The scatterplots are binned every 1 ppbv. The
dashed line indicates the 1:1 line.
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2.6 Evaluation metrics

To quantify the discrepancies between the in situ surface SO, concentrations and the estimates using the GEOS-
Chem and ML methods, we used several different metrics that were utilized in previous studies (e.g., Yang et al., 2023b;
Zhang et al., 2021; Zhang et al., 2022) including the mean absolute error (MAE; Eqg. 4), root mean squared error (RMSE; Eq.
5), and relative percent error (RPE; Eq. 6),

1
MAE = ﬁZﬂSest,i - SCNEMC,i'! (4)
1 2
RMSE = \/ﬁ Z?I(Sest,i - SCNEMC,i) ) (5)
RPE = l(zﬁ\l Sest,i"SCNEMC,i > x 100%, (6)
N SCNEMC,i

where N is the number of stations, Ses is the estimated surface concentration from the GEOS-Chem or ML method, and
Scnemc s the in situ surface concentration. Previous studies have also used slopes and correlations from linear regression
analyses between the estimated and in situ concentrations to assess the magnitude and spatial distribution, respectively (e.g.,
Kharol et al., 2017; Lee et al., 2011; McLinden et al., 2014). The GEOS-Chem and ML results were compared to previous
studies, as well as to each other. The comparison between the two methods in our study were made using an identical,

independent (i.e., retained from ML training) dataset.

3 Estimations of surface SO. Concentrations from OMI satellite data
3.1 Evaluation of the GEOS-Chem method

Maps, histograms, and scatterplots of the annual mean surface SO, concentrations from the GEOS-Chem method
and CNEMC in situ measurements are shown in Fig. 3. Both datasets have a similar spatial distribution with the highest
concentrations in the North China Plain (Fig. 3), a highly industrialized region with many anthropogenic sources of SO;
(Fig. 1b). The average correlation between the estimated and in situ concentrations is 0.58, indicating that the GEOS-Chem
method can distinguish between polluted and clean areas (Fig. 3). The GEOS-Chem method also captures a 45% decrease in
the concentrations from 2015-2018, matching the change from the monitoring network (Fig. 3). The decrease in SO is due
to the regulation of emissions, which has been previously reported in previous studies using satellite VCDs (Li et al., 2017,
Wang et al., 2020a) and surface concentrations (Wei et al., 2023; Zhang et al., 2021). Despite the similarities in the spatial
distribution and temporal trends, the surface concentrations obtained from the GEOS-Chem method are significantly
underestimated. The slope between the estimated and in situ concentrations is 0.24 with an RPE around 75% (Fig. 3). The
discrepancy in the estimated concentrations is also apparent in the frequency distributions with a peak and mean value at
lower concentrations and a smaller range compared to the in situ measurements. The concentrations from the GEOS-Chem

method and CNEMC measurements were also separated by season and averaged from 2015-2018. As shown in Fig. S3, the
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GEOS-Chem method was able to accurately capture the spatial distribution and seasonality of the in situ measurements but

still suffered from underestimation.
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220 Figure 3: Spatial distributions of the annual average surface SO2 concentrations from the CTM-based method (top row) and
CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars
representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different
year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of
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stations in each bin and includes a linear regression analysis with the best fit line (solid lines), 1:1 line (black dashed line), MAE,
RMSE, and RPE.

Table 1 summarizes the results from our study compared to previous studies using the CTM-based method. These
previous studies were primarily focused on estimating annual mean surface SO, concentrations using OMI VCDs and CTMs
of varying resolution. The studies by Lee et al. (2011) and McLinden et al. (2014) each utilized the OMI band residual
difference (BRD) SO, product and used SVRs from coarse-resolution and high-resolution CTMs, respectively. McLinden et
al. (2014) outperformed Lee et al. (2011) with slopes of 0.88 and 0.79, respectively, and correlations of 0.91 and 0.81,
respectively. Similarly, our study and Kharol et al. (2017) both use the OMI PCA SO, product and used SVRs from coarse-
resolution and high-resolution CTMs, respectively. Our study had slightly worse performance than Kharol et al. (2017) with
slopes of 0.24 and 0.39, respectively, and correlations of 0.58 and 0.61, respectively. These two sets of studies suggest that
given the same OMI data, the model resolution plays an important role in accurately estimating the surface concentrations
compared to the in situ observations, assuming that the surface monitoring data are accurate. Previous studies have also
shown that there are differences in SO, as a result of different retrieval algorithms and sensors (Wang et al., 2020a). The
higher slopes from the BRD product may be due to a high bias in the retrievals in polluted areas whereas the PCA product is
thought to be more accurate (Li et al., 2013). Additionally, the slope of 0.75 from Kharol et al. (2017) and the results from
Zhang et al. (2021) are based on applying a scaling factor to the in situ measurements to eliminate some of the bias, so these

results are not directly comparable to our study.
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Table 1: Comparison of study design (satellite data, model name and resolution, study location and study period) and performance
metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) between our study and
previous studies that utilized the CTM-based method. NR indicates that the value was not reported, and asterisks (*) indicate a
scaling factor applied to the in situ surface concentrations.

Study
stud Satellite CTM location MAE RMSE RPE Slope Correlation
u
Y data (resolution) (time [ppbv] [ppbv]  [%] [-] [-]
period)
GEOS- Eastern
owmI _
Chem, China
Our study SO, 5.7 6.3 74 0.23 0.58
(2.5° x (2015-
PCA
2.0°) 2018)
GEOS-
OMI North
Lee et al. Chem, ]
SO, America NR NR NR 0.79 0.81
(2011) (2.5° x
BRD (2006)
2.0°)
. Canadian
McLinden OoMI GEM- )
oil sands
et al. SO, MACH, NR NR NR 0.88 0.91
(2005-
(2014) BRD (15 km)
2011)
North
OMI GEM- ]
Kharol et America
SO, MACH, NR NR NR 0.39/0.75* 0.61
al. (2017) (2005-
PCA (15 km)
2015)
oMl MOZART, .
Zhang et China
SO, 1.9°x2.5° NR 3.9 19 0.83* 0.86
al. (2021) . (2014)
PCA Resolution

Inaccuracies in the CTM-based method can be partially attributed to noise in the satellite data. Individual VCD

retrievals have very large uncertainties (60-130%; Li et al., 2020a), making it difficult to compare to the ground-based

measurements on short timescales. However, the noise in the data can decrease with temporal averaging by a factor of n'?
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where n is the number of measurements being averaged (Krotkov et al., 2008). As a result, longer averaging periods (i.e.,
annual means) tend to have better performance than shorter timescales (i.e., seasonal means). The CTM resolution is also
important for obtaining accurate surface concentrations. Coarse grid cells may smooth out SO hotspots potentially resulting
in an SVR that is too small. This may account for the consistent underestimation observed from this method and the
relatively better performance in Kharol et al. (2017) with a higher resolution CTM.

3.2 Evaluation of the machine learning method

The spatial distribution, frequency distribution, and validation scatterplots of the ML and CNEMC annual mean
surface SO, concentrations from the independent testing dataset are shown in Fig. 4. The ML model estimated the surface
concentrations more accurately than the GEOS-Chem method. The average spatial correlation was 0.77, and the ML
predictions also matched the 45% decline from 2015 to 2018 observed from the CNEMC network. The most significant
improvement compared to the GEOS-Chem method is the RPE of the ML method is much smaller at 33%, and the average
slope is 0.69, indicating both less discrepancy and underestimation, respectively. The shapes of the ML-based frequency
distributions agree well with the CNEMC observations with peaks at the same concentrations and similar ranges (Fig. 4).
The ML-derived and in situ concentrations were also assessed using the seasonal concentrations averaged from 2015-2018.
As shown in Fig. S4, the ML method was able to capture the spatial distribution, seasonality, and magnitudes of the surface

concentrations on the seasonal data more accurately than the GEOS-Chem method.
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Figure 4: Spatial distributions of the annual average surface SO: concentrations from the ML-based method (top row) and
CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars
representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different
year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of
stations in each bin and includes a linear regression analysis with the best fit line (solid lines), 1:1 line (black dashed line), MAE,

RMSE, and RPE.
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Previous studies have shown that ML models can skillfully capture day-to-day variations in surface SO,
concentrations in addition to the annual and seasonal means as summarized in Table 2 (e.g., Zhang et al., 2022; Yang et al.,
2023b). The estimated daily surface concentrations from our independent testing dataset had a slope of 0.67, correlation of
0.76, and RPE of 58% compared to the in situ measurements, indicating accuracy on short timescales (Fig. 2; Table 2). The
performance of our model was comparable to previous studies but had a slightly larger discrepancy (Table 2). Our ML
model only used five predictors compared to nine in Yang et al. (2023b) and 66 in Zhang et al. (2022), which may partially
account for the increased discrepancy. Additionally, our study did not use any spatial or temporal proxies, which could also
explain the slight reduction in performance compared to other studies that have used them.
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Table 2: Comparison of study design (satellite data, machine learning model type and number of predictors, study location and
study period) and performance metrics (mean absolute error, root mean square error, relative percent error, slope, and
correlation) between our study and previous studies that utilized a ML-based method. NR indicates that the value was not
reported.

Machine

learning Study

stud Satellite model location MAE RMSE RPE Slope Correlation
u
Y data (number (time [ppbv]  [ppbv] [%%6] [-1 [-1
of period)
predictors)
Eastern
Our OMI SO, XGBoost China
3.0 5.2 59 0.67 0.75
study PCA (5) (2015-
2018)
Northern
Zhang . .
OMI SO; LightGBM China
etal. NR 4.0 39 NR 0.94
PCA (66) (2013-
(2022)
2019)
Deep
Landsat-8 neural
Yang et o )
visible and network China
al. . ) 35 5.7 47 0.76 0.85
infrared multi-task (2019)
(2023b) )
reflectance learning
©)

We performed a permutation importance analysis to assess how each predictor impacted the model predictions.
Figure 5a indicates that the PBLH and OMI SO, VCDs are the two most influential predictors followed by emissions and
wind speeds. Scatterplots between each ML predictor variable and the ML estimated surface SO, concentrations with
Spearman rank coefficients (rs) are shown in Figs. 5b-f. The ML-derived SO, concentrations increase with larger SO, VCDs
and emissions, as well as decrease with increasing PBLH and wind speeds (Figs. 5b-f). These trends are consistent with the
expected physical relationships between each variable and surface SO concentrations in the real atmosphere. Large OMI

VCDs and emissions indicating areas of high SO loading, and elevated PBLHs and wind speeds lead to mixing and the
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dilution of SO,. The rs values are small, indicating that the model may be making predictions based on the interactions
between variables rather than any individual predictor. The small number of predictors used in our model allows us to link
the ML predictions to known atmospheric processes, adding confidence to the model in its ability to accurately estimate the

surface concentrations.
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Figure 5: Evaluation of the daily ML-predicted surface concentrations using (a) permutation importance analysis, and scatterplots
showing the ML predictor variables against the ML estimated surface SO; concentrations for (b) ERA5 PBLH, (c) OMI SO:
VCDs, (d) CEDS SO:2 emissions, (e) ERA5 U-Winds, and (f) ERA5 V-Winds. Each scatterplot is colored by the number of stations
in each bin and includes the Spearman rank coefficient (rs).

4 Comparing results from the GEOS-Chem and machine learning methods

The results from the GEOS-Chem method in Sect. 3.1 were based on the full dataset since the methodology
produces results that are independent of the in situ monitoring data. However, the results from the ML method in Sect. 3.2
were only based on 10% of the data that was not used for training and reserved for an independent validation. The
comparison of these results is still important but does not provide a direct comparison of their performance. Here, the GEOS-
Chem and ML methods will be compared using the independent testing dataset (i.e., retained from ML training) to assess the
relative performance of each method given identical data. First, each technique will be validated at the CNEMC

measurement sites in Sect. 4.1, similar to the analyses in Sect. 3. Then, both methods will be used to create gridded surface
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SO, concentrations in Sect. 4.2 to assess how effective both methods are for filling in the gaps of the CNEMC monitoring

network, one of the main motivations for estimating surface concentrations from satellite data.

4.1 Performance on independent data

Scatterplots between the in situ concentrations and estimates of the surface concentrations from both the GEOS-
Chem and ML methods for the identical testing dataset are shown in Fig. 6. The surface concentrations estimated by the ML
model are much closer to the in situ measurements (1:1 line) than the GEOS-Chem method, which is consistent with the
previous results in Figs. 3-4. For the annual mean concentrations, the ML method had an average slope of 0.69 and
correlation of 0.77, compared to values of 0.18 and 0.30 from the GEOS-Chem method, respectively (Figs. 6a-d). The ML
model also outperforms the GEOS-Chem method on the seasonal data averaged over 2015-2018. The average slope and
correlation of 0.64 and 0.73, compared to 0.19 and 0.31, respectively (Figs. 6e-h). The GEOS-Chem method performed
worse on this smaller dataset compared to the full dataset in Sect. 3.1 due to less temporal averaging, leading to larger
discrepancies with the in situ measurements. As shown in Fig. S5, there is a smaller decrease in the performance of the ML
method compared to the GEOS-Chem method when assessing the performance for individual seasons. The slope and
correlation for the ML method decreased to 0.59 and 0.67, compared to 0.15 and 0.22 for the GEOS-Chem method,
respectively (Fig. S5). Despite the smaller amounts of data in the independent dataset and for individual seasons, the ML
method still accurately captures the spatial distribution and magnitudes of the surface SO, concentrations, indicating better
consistency with the CNEMC measurements than the GEOS-Chem method.
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Figure 6: Scatterplots showing the estimated surface SOz concentrations from the GEOS-Chem method (light blue squares) and
ML method (dark blue triangles) against the in situ measurements from the independent dataset for (a-d) annual mean
concentrations for each year in the study period, and (e-h) the 2015-2018 mean concentrations separated by season. Each
scatterplot includes a linear regression analysis with the best fit line (solid lines), 1:1 line (black dashed line), MAE, RMSE, and
RPE.

Time series of the annual and seasonal mean surface SO, concentrations from the in situ measurements, and
estimated concentrations from the GEOS-Chem and ML methods are shown in Figs. 7a-b. The ML estimated concentrations
were much more accurate than the GEOS-Chem method compared to the CNEMC in situ concentrations. The overall mean
ML concentrations had an average discrepancy of 5% with the in situ measurements, compared to a 58% discrepancy from
the GEOS-Chem method (Figs. 7a-b). The ML method also captured the same temporal variations as the in situ
measurements with a 44% decrease in concentrations from 2015-2018, and an average seasonal fluctuation by a factor of 1.9
(Figs. 7a-b). The GEOS-Chem method also had good agreement in the temporal trends of the in situ measurements with a
36% decrease from 2015-2018 and a seasonal fluctuation by a factor of 2.4 between the winter and summer, but not as good
as the ML method (Figs. 7a-b). Despite the similarities in the overall and seasonal variations, the greatest difference between

the time series of the two methods was the magnitude of the concentrations, as shown in Sect. 3.
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Figure 7: Time series of the surface SO2 concentrations from the GEOS-Chem (CTM) method (light blue squares), ML method
(dark blue triangles), and CNEMC in situ measurements (red circles) from the independent dataset as (a) annual and (b) seasonal
means, as well as the slopes (pink x’s) and correlations (green plus signs) from the (c) annual and (d) seasonal mean validations
between the GEOS-Chem (CTM) method (dashed line) and ML method (solid line) with the in situ measurements. Error bars on
the concentrations represent a 1 standard deviation uncertainty, and error bars on the slopes represent a 95% confidence interval
based on the standard error of the linear regression fit.

To assess how the accuracy of each method changes over time, time series of the slopes and correlations from the
individual annual and seasonal comparisons between the estimated and in situ surface concentrations (from Fig. S5) are
shown in Figs. 7c-d. For the entire study period, the performance of the ML method was much more accurate than the
GEOS-Chem method as indicated by the higher slopes and correlations (Figs. 7c-d). Additionally, the GEOS-Chem method
suffered from a decrease in accuracy over time alongside declining SO, concentrations while the ML method remained
stable (Figs. 7c-d). The accuracy of the CTM-based method is highly dependent on noise in the satellite data. Smaller
datasets with less temporal averaging tend to have more noise, which leads to worse performance. Additionally, as SO,
loading decreases, it becomes harder to detect from the satellite, introducing additional noise over time. Comparatively, the
ML method is more resistant to noise in the satellite data. As the SO, VCDs decreased, the ML predictions became more
reliant upon meteorological predictors to estimate the surface concentrations, limiting the impact of the noisy satellite data
(Figs. S6a-d). The accuracy of the ML method has a distinct seasonality with generally better performance in the winter and
worse in the summer (Fig. 7d). The PBLH and OMI SO, VCDs are dominant predictors in the winter compared to CEDS
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emissions and PBLH in the summer (Figs. S6e-h). The CEDS emissions are less consistent with the in situ measurements
than the OMI VCDs with correlations of 0.15 and 0.29, respectively, which may account for the increased discrepancy of the
ML-derived concentrations during the summer.

In summary, both methods captured the same temporal variations as the in situ measurements, but the ML method
performed better and had more stable performance over time than the CTM-based method, which had decreasing

performance due to more noise in the satellite data from decreasing SO, loading.

4.2 Comparison of gridded products

Here, the GEOS-Chem and ML methods will be used to create high-resolution gridded products of surface SO,
concentrations to assess how effective each technique is for filling in the gaps of the CNEMC air quality monitoring
network. The gridded annual mean surface SO, concentrations from the ML and GEOS-Chem methods are shown in Fig. 8
at 0.25° horizontal resolution. Both methods have similar spatial distributions to one another over land with the highest
concentrations in the North China Plain and lower concentrations elsewhere. Over land, each method also has a spatial
distribution similar to the retrieved SO, VCDs from OMI as shown in Fig. S7a-d. Over the oceans, there is disagreement in
the spatial distributions with the ML method producing high concentrations and the CTM method producing low
concentrations. Since the ML predictions are significantly affected by boundary layer heights (Fig. 5), the model is most
likely incorrectly associating the low marine boundary layer with areas elevated pollutants typical of low continental
boundary layers, as shown in Fig. 8. Inaccuracies over the oceans have also been reported in Kang et al. (2021) where ML
was used to estimate surface concentrations of NO, and ozone and were attributed to a lack of training data for the ML
model in these locations. Since the ML model was only trained for conditions over land, it is not able to make accurate
predictions over the ocean or other areas that are different from where the model was trained. As a result, the CTM-based
method may be more reliable for estimating the surface SO, concentrations in locations with a lack of surface observations
where a ML model cannot be trained.

As shown in Fig. 8, both gridded products captured the decrease in annual mean concentrations from 2015 to 2018
observed at the CNEMC sites. Both methods were also able to capture the seasonal variations in their gridded products with
the highest concentrations in the winter and lowest concentrations in the summer, as shown in Fig. S8. The seasonal surface
SO; concentrations were also still consistent with the OMI SO, VCDs (Fig. S7e-h). Although it is not possible to validate the
gridded products, since the ML method had more accurate spatial distributions, temporal variations, and magnitudes than the
CTM method at the CNEMC sites, the gridded product is likely to be more accurate as well, but only over land. The
unexpected area of elevated concentrations over the oceans exposed a major limitation of the ML method and suggests that
future work in improving the CTM-based method may be worthwhile, especially for estimating surface SO, concentrations

in locations where training data are not available.
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Figure 8: Maps of the annual mean surface SOz concentrations in ppbv from the ML method (top row) and GEOS-Chem method
(bottom row) over the study area at 0.25° horizontal resolution. Each column represents a different year of the study period (from
left to right: 2015, 2016, 2017, and 2018).

5 Conclusion and discussion

We estimated surface SO, concentrations over eastern China from 2015-2018 using OMI satellite data with two
different methods: the GEOS-Chem model to convert the OMI SO, VCDs into surface concentrations, and an XGBoost
model to statistically relate OMI SO, retrievals, ERA5 meteorology, and CEDS SO, emissions to in situ surface
concentrations. We found that the ML method had better performance than the GEOS-Chem method at estimating the
surface concentrations when validated against in situ measurements from the CNEMC air quality monitoring network. The
ML method had a discrepancy of ~30% with no significant bias (slope = 0.69), whereas the GEOS-Chem method had a
discrepancy of ~75% with a significant underestimation (slope = 0.24). To our knowledge, this is the first study to directly
compare the relative performance of the CTM- and ML-based methods for estimating surface SO, concentrations from
satellite data.

Despite the underestimation, the GEOS-Chem method produced surface SO, concentrations that had similar spatial
distributions (r = 0.58) and temporal patterns as the CNEMC in situ measurements, similar to previous studies using the
CTM-based method. To obtain a good estimate of the spatial distribution, the CTM method requires averaging data over
seasonal or annual timescales to reduce the noise in the satellite retrievals, and the underestimation of this method is likely
due to the coarse resolution of GEOS-Chem smoothing out the SVR near SO, hotspots. The CTM-based method also

suffered from decreasing accuracy over time due to decreasing SO, loading. In addition to lower discrepancies, the ML
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method outperformed the CTM method in terms of the spatial distribution (r = 0.77) and temporal variations. The success of
the ML method was especially apparent for smaller datasets that have limited temporal averaging and thus higher noise in
the OMI data, which was also indicated by the accuracy over time. Even though our ML model was only based on five input
variables, the results were similar to previous studies that used far more predictors. The small number of predictors also
allowed us to relate the model predictions and input variables to known physical processes such as pollutant emissions and
dispersion, thus lending more confidence in our ML model as compared with other “black box” ML models. Finally, both
methods were used to create high-resolution gridded products to provide estimates of surface SO, concentrations in locations
that do not have access to ground-based air quality monitoring measurements. This analysis exposed a major limitation in the
ML method where it produced unrealistic spatial distributions of SO, over the ocean since it was only trained on data from
over the land. Despite the underestimation of the CTM method, there is still value in using it to estimate surface SO
concentrations in locations where there is no training data available for developing ML-based techniques, but future steps
should be taken to decrease the underestimation of this method.

In the future, these methods should be applied to higher-resolution satellite data, which may help to improve the
results. OMI can only detect sources as small as 30 kt yr?, but newer instruments like the Tropospheric Monitoring
Instrument (TROPOMI; Veefkind et al., 2012) or can detect sources as small as 8 kt yr? (Fioletov et al., 2023). Newer polar
orbiting satellites like TROPOMI and geostationary satellites like Tropospheric Emissions: Monitoring of Pollution
(TEMPO; Zoogman et al., 2017) may offer future opportunities to estimate surface concentrations of air pollutants at even
higher resolution. This also may improve the accuracy of both methods, especially if higher-resolution CTMs are also
utilized. Additionally, this study only focused on SO, but both methods can also be applied to other air pollutants such as
NO,, 0zone, and particulate matter to see if the relative performance of each method is similar for other species. Since these
two methods can utilize space-based measurements to fill in the gaps of ground-based air quality networks, investigating
their relative performance as improvements are made to the satellite data, CTMs, and ML models is critical for monitoring

near-surface air pollution with high accuracy in locations where traditional observations are not possible.

Code and data availability

All  data used in this work are open source. The OMI PBL SO, VCDs are available at
https://doi.org/10.5067/Aura/OMI/DATA2023, and the OMI emission  catalogue is available at

https://s02.gsfc.nasa.qov/measures.html. The GEOS-Chem source code is available at

https://github.com/geoschem/GCClassic, and the GEOS-Chem input data, including the CEDS emission inventory, is

available at https://geos-chem.s3.amazonaws.com/index.html. The ERA5 meteorology data are available at https://nsf-ncar-

erab5.s3.amazonaws.com/index.html. The CNEMC in situ measurements were obtained from http://www.cnemc.cn. The

XGBoost model was developed using the scikit-learn  (https:/scikit-learn.org/stable/) and  XGBoost
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(https://xgboost.readthedocs.io/en/stable/) Python packages. Finally, all maps were made with Natural Earth via the Cartopy

Python package (https://scitools.org.uk/cartopy).

Supplement link

To be added.
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