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Abstract. Sulfur dioxide (SO2) is an important air pollutant that contributes to negative health effects, acid rain, and aerosol 10 

formation and growth. SO2 has been measured using ground-based air quality monitoring networks, but the routine 

monitoring sites are predominantly placed in urban areas, leaving large gaps in the network in less populated locations. 

Previous studies have used chemical transport models (CTMs) or machine learning techniques to estimate surface SO2 

concentrations from satellite vertical column densities, but no direct comparisons between the methods have been made. In 

this study, we estimated surface SO2 concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China 15 

from 2015-2018 utilizing GEOS-Chem simulations and an extreme gradient boosting machine learning model. Compared to 

the in situ measurements, the SO2 concentrations estimated from the CTM method had similar spatial distributions (r = 0.58) 

and intra- and interannual variations but were underestimated (slope = 0.24) with a relative percent error of ~75% and had 

worsening performance over time. The machine learning method produced more accurate spatial distributions (r = 0.77) and 

temporal variations, a smaller discrepancy and bias (~30%; slope = 0.69) and relatively stable performance over time. The 20 

machine learning method performed better than the GEOS-Chem method on smaller datasets and timescales with shorter 

temporal averaging periods. Ultimately, both methods were useful for estimating surface SO2 concentrations since the CTM-

based method does not rely on in situ monitoring and produced more reasonable spatial distributions than the machine 

learning method over areas without surface monitoring data.  

1 Introduction 25 

Sulfur dioxide (SO2) is an important air pollutant due to its effects on human health, air quality, weather, and 

climate. SO2 has many anthropogenic sources such as fossil fuel combustion in power plants and ore smelters, as well as 

natural sources from volcanoes (Engdahl, 1973). Surface SO2 concentrations are mainly driven by anthropogenic activity in 

urban areas and are known to cause cardiovascular and respiratory health impacts (Engdahl, 1973; Krzyzanowski & 

Wojtyniak, 1982). SO2 readily undergoes oxidation reactions in the atmosphere to form sulfuric acid, which contributes to 30 
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acid rain (Seinfeld and Pandis, 2016) and participates in aerosol formation and growth (Lee et al., 2019), leading to further 

effects on weather and the global energy budget (NASEM, 2016).  

 Concentrations of SO2 at the surface have been measured using ground-based air quality monitoring networks. 

Surface concentrations are measured on hourly to daily time intervals, but the sites are predominantly located in urban areas, 

leaving large gaps in the network elsewhere. Satellite-based instruments can measure total-column concentrations of SO2 35 

globally. These SO2 vertical column densities (VCDs) are retrieved using the absorption of backscattered solar radiation in 

the ultraviolet wavelengths measured by a spectrometer (e.g., Krotkov et al., 2008; Levelt et al., 2006; Li et al., 2013; Li et 

al., 2020a; Nowlan et al., 2011; Theys et al., 2015). The VCDs are typically available over cloud-free locations over large 

areas on a daily basis but do not directly provide the surface concentrations. Additional tools are required to estimate the 

surface concentrations from the satellite-retrieved VCDs as discussed below. 40 

The first method is to use chemical transport models (CTMs) to convert satellite VCDs into surface concentrations 

using simulated surface-to-VCD ratios (SVRs). This method was initially developed for estimating surface PM2.5 from 

satellite-based aerosol optical depth retrievals (Liu et al., 2004) and was later applied to nitrogen dioxide (NO2; Lamsal et al., 

2008) and SO2 (Lee et al., 2011). Lee et al. (2011) and Zhang et al. (2021) used coarse-resolution CTMs (grid spacings on 

the order of 100 km) to convert SO2 VCDs from the Ozone Monitoring Instrument (OMI) into surface concentrations over 45 

North America for 2006, and China for 2005-2018, respectively. McLinden et al. (2014) and Kharol et al. (2017) used 

higher-resolution CTMs (grid spacing on the order of 10 km) and OMI VCDs to estimate the surface concentrations with 

focuses on the Canadian oil sands from 2005-2011, and North America from 2005-2015, respectively. These studies 

demonstrate that annual mean satellite-derived surface SO2 concentrations accurately capture the spatial distribution from the 

ground-based air quality monitoring network, despite the estimated surface concentrations being generally underestimated. 50 

An advantage of the CTM method is that it is based on fundamental principles of atmospheric dynamics and chemistry and 

can produce results that are independent of observed surface concentrations. The main limitations of CTMs are the 

computational expense of running the simulations (Fan et al., 2022) and coarse-resolution simulations may have large biases 

due to emissions, meteorology, and chemical processes (Wang et al., 2020b; Wang et al., 2020c).  

More recently, machine learning (ML) techniques have been used to estimate surface SO2 concentrations from 55 

satellite retrievals, meteorology, and other variables such as emission inventories and land use types. Zhang et al. (2022) 

used a Light Gradient Boosting Machine (LightGBM) to estimate surface SO2 concentrations over northern China using 

OMI SO2 VCDs, meteorological variables, emissions, land use classifications, population density, and others. Yang et al. 

(2023a) used radiances from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate the 

surface concentrations of SO2 and other criteria air pollutants in a multi-output random forest model. Both studies showed 60 

that ML techniques can accurately capture the spatial distribution and magnitude of the surface concentrations but had 

artificial biases due to nonphysical links between variables and the surface concentrations, such as interactions between 

certain land use types and skin temperature as shown by Zhang et al. (2022). In these studies, the ML models also 

incorporate spatial (e.g., longitude, latitude, population density) and/or temporal (e.g., numeric day of year, hour of day) 
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proxies to improve performance, but this can lead the model to learn the locations of cities and introduce an artificial 65 

seasonality rather than depending on measurable quantities, limiting the physical usefulness and interpretability of the model 

(Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). ML models are typically much faster to train and run than a full 

CTM simulation and can often utilize higher resolution data (Fan et al., 2022). Since ML models can only use statistical 

relationships to make predictions, they are often limited in their physical interpretability.  

Although the CTM and ML methods have both been employed in estimating surface SO2 concentrations from 70 

satellite retrievals, so far there has been a lack of direct comparisons between the two methods. Here, we estimated surface 

SO2 concentrations using OMI VCDs over eastern China (105-125°E, 25-45°N) from 2015-2018 to directly compare the 

two methods. First, we used the relationship between the surface and total column concentrations simulated by GEOS-Chem 

to estimate surface SO2 concentrations from the satellite data. Then, we used a ML model to predict surface SO2 

concentrations from OMI VCDs, meteorological variables, and an emission inventory, which are all physically relevant to 75 

the spatial distribution or lifetime of SO2. The results from each method were validated against ground-based in situ 

measurements from the China National Environmental Monitoring Centre (CNEMC) air quality monitoring network. 

Finally, we compared the performance of each method on an identical dataset for the first time to gain insights on their 

abilities and limitations to accurately estimate the surface SO2 concentrations.  

2 Data and methods 80 

2.1 Study region 

Eastern China has abundant anthropogenic SO2 emissions and thus is a region with elevated surface concentrations. 

A map of our study region with the locations of OMI-derived SO2 emission sources (Fioletov et al., 2022) and CNEMC 

monitoring sites in the study region are shown in Fig. 1. The largest sources of SO2 in the study region come from 70 power 

plants, as well as five ore smelters and one area of oil and gas production (Fig. 1b). There are also approximately 1000 85 

stations located across the region that can be used to validate the estimated surface concentrations from the satellite data 

(Fig. 1c). Our analysis covers the period from 2015 (the first full year of in situ measurements) to 2018 (to avoid the impacts 

of the COVID-19 lockdowns).  
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 90 

Figure 1: Maps showing the (a) study region (solid box; 105°E - 125°E, 25°N - 45°N) relative to the rest of the Asian continent, (b) 

locations of large SO2 sources from the OMI emission catalogue during 2015 (Fioletov et al., 2022) including 70 power plants 

(stars), five ore smelters (triangles), one area of oil and gas production (square), and (c) locations of the CNEMC monitoring 

stations (circles).  

 95 

2.2 OMI satellite data 

We employed data from the Ozone Monitoring Instrument (OMI; Levelt et al., 2006), a hyperspectral 

ultraviolet/visible nadir solar backscatter spectrometer launched onboard the Aura satellite in 2004. Aura flies in a sun-

synchronous polar orbit, and OMI is used to retrieve SO2 VCDs with daily global coverage and a spatial resolution of 13 km 

x 24 km at nadir, a significant improvement from previous satellite-based instruments. The OMI overpass time of our study 100 

region ranges from approximately 12:15 pm to 2:45 pm local time. For both methods, we used the OMI Planetary Boundary 

Layer (PBL) SO2 product to estimate the surface concentrations due to its main application for anthropogenic, near-surface 

SO2 (Krotkov et al., 2014; Li et al., 2020b). The OMI retrievals use a principal component analysis- (PCA) based algorithm 

for spectral fitting based on the radiances of wavelengths between 310.5-340 nm for each row in the measurement swath (Li 
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et al., 2013; Li et al., 2020a). This version of the PCA retrievals include pixel-specific air mass factor calculations to convert 105 

slant column densities (SCDs) to VCDs rather than using a fixed value worldwide (Li et al., 2020a). The VCDs express the 

number of SO2 molecules in the column and are reported in Dobson Units (DU; 1 DU = 2.69 x 1016 molecules cm-2). To 

ensure good data quality, we gridded the data to 0.25° x 0.25° resolution and screened out measurements with cloud 

fractions greater than 0.3, solar zenith angles greater than 65°, located in the outer ten cross-track positions, or affected by 

the row anomaly (NASA, 2020). We also excluded extreme outliers that fell outside of five standard deviations from the 110 

mean as thresholds less than this appeared to remove legitimate data. 

2.3 CNEMC ground-based monitoring data 

Ground-based SO2 concentrations from the China National Environmental Monitoring Centre (CNEMC) air quality 

monitoring network were used to validate the performance of each method. The concentrations were converted from µg m-3 

to parts per billion (ppbv) following the procedure outlined in Wei et al. (2023). To ensure the ground-based measurements 115 

were temporally aligned with the OMI overpass, we averaged the hourly concentrations from 12:00 pm to 3:00 pm local time 

on days where there was at least one OMI observation within 40 km of the station. Like the OMI data, we also removed data 

that fell more than five standard deviations outside of the mean.  

2.4 GEOS-Chem technique 

We used simulated SVRs from the GEOS-Chem model (v14.2.2; Bey et al., 2001) to convert the OMI VCDs into 120 

surface concentrations for the CTM-based method. We conducted simulations for January, April, July, and October 2015 

each with a one-month spin-up to represent the SO2 profiles in different seasons. To reduce the computational expense, we 

used the monthly average SVR from each simulation to estimate the surface concentrations in the corresponding winter 

(DJF), spring (MAM), summer (JJA), and autumn (SON) months for all years of the study period. The model was run at a 

resolution of 2.5° x 2.0° with 47 vertical layers and was driven by assimilated GEOS-FP meteorology (Lucchesi, 2018) and 125 

the Community Emissions Data System (CEDS) emission inventory (Hoesly et al., 2018). The internal time steps for the 

chemistry and advection calculations in the model were lengthened by 50% from the default values to reduce simulation 

times while minimizing errors (Philip et al., 2016). We used model output at the lowest model level (~60 m above ground 

level) at 2:00 pm local time, the only output timestep inside the OMI overpass window. We only included GEOS-Chem data 

in the analysis if there was at least one valid OMI observation within the model grid cell on a given day. 130 

The approach from Lee et al. (2011) was used to infer surface SO2 concentrations from OMI VCDs using the 

GEOS-Chem (GC) simulated SO2 profiles. The conversion was done using the following relationship: 

𝑆𝑂𝑀𝐼 =
𝜈𝑆𝐺𝐶

𝜈𝛺𝐺𝐶,𝑃𝐵𝐿+𝛺𝐺𝐶,𝐹𝑇
× 𝛺𝑂𝑀𝐼 ,           (1) 

where S is the surface SO2 concentration in ppbv and Ω is the SO2 VCD in DU. The FT and PBL subscripts are the free-

tropospheric and boundary layer VCDs, respectively, which were calculated relative to the GEOS-FP PBL height. Since 135 
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there is a significant difference in resolution between the satellite and model data, OMI VCDs were used to provide sub-

model grid variability (ν) using: 

𝜈 =
𝛺𝑂𝑀𝐼

𝛺′𝑂𝑀𝐼
,             (2) 

where ΩOMI is the OMI VCD at 0.25° resolution and Ω'OMI is the average OMI VCD over the 2.5° x 2.0° GEOS-Chem grid 

cell. To compare the estimated concentrations to the in situ surface monitoring data, we used a 40 km averaging radius 140 

around each station to increase the amount of usable data and reduce noise in the OMI data. Since this method does not 

require prior knowledge of in situ measurements, the analysis in Sect. 3.1 will be performed over the full dataset. 

One simplification of our approach is to use January, April, July, and October simulations for a single year (2015) 

to estimate the surface SO2 concentrations over the entire study period. To evaluate this approach, we first compared the 

GEOS-Chem and OMI SO2 VCDs. We found that there was no significant change in the correlation between them from 145 

2015-2018 (Fig. S1). This indicates the spatial distributions remained similar, and the model can distinguish between 

relatively polluted and unpolluted areas, and thus, the SVRs in those environments. We also ran four additional GEOS-Chem 

simulations for January, April, July, and October 2018 to assess the year-to-year changes in the SVR. The slopes in Fig. S2 

indicate that the monthly average SVR does not have a systematic change from 2015-2018 and has a maximum discrepancy 

of 13%. Since the spatial distribution of SO2 and simulated SVRs remained relatively constant over time, we believe this 150 

simplification made to reduce computational expense will not have a significant impact on the results. 

2.5 Machine learning technique 

To estimate the surface concentrations using a ML model, we used an eXtreme Gradient Boosting regression model 

(XGBoost; Chen & Guestrin, 2016) to statistically relate satellite-based SO2 VCDs, meteorological variables, and emissions 

data to the in situ measurements. XGBoost models use a scalable tree boosting system to efficiently train an ensemble of 155 

decision trees by adding a new tree with each training epoch and learning with each iteration (Chen & Guestrin, 2016; 

Friedman, 2001). We trained the model with an ensemble of 500 trees with a maximum tree depth of 15 splits, and a learning 

rate of 0.15 on a mean squared error loss function. Using an ensemble with more trees did not improve the performance of 

the model, and using a depth of 15 splits was found to be the best balance between overfitting and underfitting during 

training.  160 

Our ML model was trained on a small number of variables (five) that each have known physical relationships to the 

spatial distribution or lifetime of SO2. By using a small number of variables, it is easier to derive physical meaning from the 

ML predictions without sacrificing accuracy since the input variables are already known to affect surface SO2 

concentrations. First, we used daily OMI SO2 VCDs to estimate the spatial distribution of SO2. Next, we used hourly 100 m 

u-wind, 100 m v-wind, and PBL height (PBLH) averaged over the OMI overpass window from the European Centre for 165 

Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2020; ECMWF, 2019) to account for 

the meteorological mixing and dispersion of SO2. Finally, we used monthly SO2 emissions from the CEDS inventory to 
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capture the known locations of SO2 sources. We trained the model on logarithmic emissions since the values ranged several 

orders of magnitude, and logarithmic boundary layer heights to get better sensitivity to variations in low boundary layers. 

The model can be summarized as: 170 

𝑆𝑀𝐿 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝛺𝑂𝑀𝐼 , 𝑈𝐸𝑅𝐴5, 𝑉𝐸𝑅𝐴5 , log10[𝑃𝐵𝐿𝐻𝐸𝑅𝐴5] , log10[𝐸𝐶𝐸𝐷𝑆]),      (3) 

where SML is the predicted surface concentrations from the XGBoost ML model, ΩOMI is the satellite SO2 VCD, UERA5 is the 

u-wind, VERA5 is the v-wind, PBLHERA5 is the boundary layer height, and ECEDS is the SO2 emissions. 

We trained the model on 90% of the daily data (N = 137630) from 2015 to 2018 with meteorology and emission 

variables sampled to match the OMI observations. The input variables were averaged within 40 km of the CNEMC sites for 175 

training, as done in the GEOS-Chem method. The remaining 10% of the data (N = 15292) was reserved for a sample-based 

independent validation, as done in previous studies (e.g., Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). Figure 2 

shows that the model had better performance with the training data (slope = 0.89; r = 0.95) compared to the testing data 

(slope = 0.67; r = 0.76), indicating that the model has good performance, but is slightly overfitting, a common artifact of 

complex machine learning models such as XGBoost.  180 

 

 

Figure 2: Scatterplots between the daily ML model predictions and CNEMC in situ measurements for the (a) independent dataset 

and (b) training dataset. Each panel includes a linear regression analysis with best fit line (solid line) and discrepancy statistics for 

the estimated surface SO2 concentrations compared to in-situ measurements. The scatterplots are binned every 1 ppbv. The 185 
dashed line indicates the 1:1 line. 
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2.6 Evaluation metrics  

To quantify the discrepancies between the in situ surface SO2 concentrations and the estimates using the GEOS-

Chem and ML methods, we used several different metrics that were utilized in previous studies (e.g., Yang et al., 2023b; 

Zhang et al., 2021; Zhang et al., 2022) including the mean absolute error (MAE; Eq. 4), root mean squared error (RMSE; Eq. 190 

5), and relative percent error (RPE; Eq. 6),  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑆𝑒𝑠𝑡,𝑖 − 𝑆𝐶𝑁𝐸𝑀𝐶,𝑖|

𝑁
𝑖 ,           (4) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑒𝑠𝑡,𝑖 − 𝑆𝐶𝑁𝐸𝑀𝐶,𝑖)

2𝑁
𝑖   ,          (5) 

𝑅𝑃𝐸 =
1

𝑁
(∑ |

𝑆𝑒𝑠𝑡,𝑖−𝑆𝐶𝑁𝐸𝑀𝐶,𝑖

𝑆𝐶𝑁𝐸𝑀𝐶,𝑖
|𝑁

𝑖 ) × 100%,          (6) 

where N is the number of stations, Sest is the estimated surface concentration from the GEOS-Chem or ML method, and 195 

SCNEMC is the in situ surface concentration. Previous studies have also used slopes and correlations from linear regression 

analyses between the estimated and in situ concentrations to assess the magnitude and spatial distribution, respectively (e.g., 

Kharol et al., 2017; Lee et al., 2011; McLinden et al., 2014). The GEOS-Chem and ML results were compared to previous 

studies, as well as to each other. The comparison between the two methods in our study were made using an identical, 

independent (i.e., retained from ML training) dataset. 200 

3 Estimations of surface SO2 Concentrations from OMI satellite data 

3.1 Evaluation of the GEOS-Chem method 

Maps, histograms, and scatterplots of the annual mean surface SO2 concentrations from the GEOS-Chem method 

and CNEMC in situ measurements are shown in Fig. 3. Both datasets have a similar spatial distribution with the highest 

concentrations in the North China Plain (Fig. 3), a highly industrialized region with many anthropogenic sources of SO2 205 

(Fig. 1b). The average correlation between the estimated and in situ concentrations is 0.58, indicating that the GEOS-Chem 

method can distinguish between polluted and clean areas (Fig. 3). The GEOS-Chem method also captures a 45% decrease in 

the concentrations from 2015-2018, matching the change from the monitoring network (Fig. 3). The decrease in SO2 is due 

to the regulation of emissions, which has been previously reported in previous studies using satellite VCDs (Li et al., 2017; 

Wang et al., 2020a) and surface concentrations (Wei et al., 2023; Zhang et al., 2021). Despite the similarities in the spatial 210 

distribution and temporal trends, the surface concentrations obtained from the GEOS-Chem method are significantly 

underestimated. The slope between the estimated and in situ concentrations is 0.24 with an RPE around 75% (Fig. 3). The 

discrepancy in the estimated concentrations is also apparent in the frequency distributions with a peak and mean value at 

lower concentrations and a smaller range compared to the in situ measurements. The concentrations from the GEOS-Chem 

method and CNEMC measurements were also separated by season and averaged from 2015-2018. As shown in Fig. S3, the 215 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



9 

 

GEOS-Chem method was able to accurately capture the spatial distribution and seasonality of the in situ measurements but 

still suffered from underestimation.  

 

 

Figure 3: Spatial distributions of the annual average surface SO2 concentrations from the CTM-based method (top row) and 220 
CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars 

representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different 

year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of 
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stations in each bin and includes a linear regression analysis with the best fit line (solid lines), 1:1 line (black dashed line), MAE, 

RMSE, and RPE. 225 

 

Table 1 summarizes the results from our study compared to previous studies using the CTM-based method. These 

previous studies were primarily focused on estimating annual mean surface SO2 concentrations using OMI VCDs and CTMs 

of varying resolution. The studies by Lee et al. (2011) and McLinden et al. (2014) each utilized the OMI band residual 

difference (BRD) SO2 product and used SVRs from coarse-resolution and high-resolution CTMs, respectively. McLinden et 230 

al. (2014) outperformed Lee et al. (2011) with slopes of 0.88 and 0.79, respectively, and correlations of 0.91 and 0.81, 

respectively. Similarly, our study and Kharol et al. (2017) both use the OMI PCA SO2 product and used SVRs from coarse-

resolution and high-resolution CTMs, respectively. Our study had slightly worse performance than Kharol et al. (2017) with 

slopes of 0.24 and 0.39, respectively, and correlations of 0.58 and 0.61, respectively. These two sets of studies suggest that 

given the same OMI data, the model resolution plays an important role in accurately estimating the surface concentrations 235 

compared to the in situ observations, assuming that the surface monitoring data are accurate. Previous studies have also 

shown that there are differences in SO2 as a result of different retrieval algorithms and sensors (Wang et al., 2020a). The 

higher slopes from the BRD product may be due to a high bias in the retrievals in polluted areas whereas the PCA product is 

thought to be more accurate (Li et al., 2013). Additionally, the slope of 0.75 from Kharol et al. (2017) and the results from 

Zhang et al. (2021) are based on applying a scaling factor to the in situ measurements to eliminate some of the bias, so these 240 

results are not directly comparable to our study. 
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Table 1: Comparison of study design (satellite data, model name and resolution, study location and study period) and performance 

metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) between our study and 

previous studies that utilized the CTM-based method. NR indicates that the value was not reported, and asterisks (*) indicate a 245 
scaling factor applied to the in situ surface concentrations. 

Study 
Satellite 

data 

CTM 

(resolution) 

Study 

location 

(time 

period) 

MAE  

[ppbv] 

RMSE  

[ppbv] 

RPE  

[%] 

Slope 

[-] 

Correlation 

[-] 

Our study  

OMI 

SO2 

PCA 

GEOS-

Chem, 

(2.5° x 

2.0°) 

Eastern 

China 

(2015-

2018) 

5.7 6.3 74 0.23 0.58 

Lee et al. 

(2011) 

OMI 

SO2 

BRD 

GEOS-

Chem, 

(2.5° x 

2.0°) 

North 

America 

(2006) 

NR NR NR 0.79 0.81 

McLinden 

et al. 

(2014) 

OMI 

SO2 

BRD 

GEM-

MACH, 

(15 km) 

Canadian 

oil sands 

(2005-

2011) 

NR NR NR 0.88 0.91 

Kharol et 

al. (2017) 

OMI 

SO2 

PCA 

GEM-

MACH, 

(15 km)  

North 

America 

(2005-

2015) 

NR NR NR 0.39/0.75* 0.61 

Zhang et 

al. (2021) 

OMI 

SO2 

PCA 

MOZART, 

 1.9° x 2.5° 

Resolution 

China 

(2014) 
NR 3.9 19 0.83* 0.86 

 

 

Inaccuracies in the CTM-based method can be partially attributed to noise in the satellite data. Individual VCD 

retrievals have very large uncertainties (60-130%; Li et al., 2020a), making it difficult to compare to the ground-based 250 

measurements on short timescales. However, the noise in the data can decrease with temporal averaging by a factor of n1/2 
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where n is the number of measurements being averaged (Krotkov et al., 2008). As a result, longer averaging periods (i.e., 

annual means) tend to have better performance than shorter timescales (i.e., seasonal means). The CTM resolution is also 

important for obtaining accurate surface concentrations. Coarse grid cells may smooth out SO2 hotspots potentially resulting 

in an SVR that is too small. This may account for the consistent underestimation observed from this method and the 255 

relatively better performance in Kharol et al. (2017) with a higher resolution CTM.  

3.2 Evaluation of the machine learning method  

The spatial distribution, frequency distribution, and validation scatterplots of the ML and CNEMC annual mean 

surface SO2 concentrations from the independent testing dataset are shown in Fig. 4. The ML model estimated the surface 

concentrations more accurately than the GEOS-Chem method. The average spatial correlation was 0.77, and the ML 260 

predictions also matched the 45% decline from 2015 to 2018 observed from the CNEMC network. The most significant 

improvement compared to the GEOS-Chem method is the RPE of the ML method is much smaller at 33%, and the average 

slope is 0.69, indicating both less discrepancy and underestimation, respectively. The shapes of the ML-based frequency 

distributions agree well with the CNEMC observations with peaks at the same concentrations and similar ranges (Fig. 4). 

The ML-derived and in situ concentrations were also assessed using the seasonal concentrations averaged from 2015-2018. 265 

As shown in Fig. S4, the ML method was able to capture the spatial distribution, seasonality, and magnitudes of the surface 

concentrations on the seasonal data more accurately than the GEOS-Chem method.  
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Figure 4: Spatial distributions of the annual average surface SO2 concentrations from the ML-based method (top row) and 270 
CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars 

representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different 

year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of 

stations in each bin and includes a linear regression analysis with the best fit line (solid lines), 1:1 line (black dashed line), MAE, 

RMSE, and RPE. 275 
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Previous studies have shown that ML models can skillfully capture day-to-day variations in surface SO2 

concentrations in addition to the annual and seasonal means as summarized in Table 2 (e.g., Zhang et al., 2022; Yang et al., 

2023b). The estimated daily surface concentrations from our independent testing dataset had a slope of 0.67, correlation of 

0.76, and RPE of 58% compared to the in situ measurements, indicating accuracy on short timescales (Fig. 2; Table 2). The 280 

performance of our model was comparable to previous studies but had a slightly larger discrepancy (Table 2). Our ML 

model only used five predictors compared to nine in Yang et al. (2023b) and 66 in Zhang et al. (2022), which may partially 

account for the increased discrepancy. Additionally, our study did not use any spatial or temporal proxies, which could also 

explain the slight reduction in performance compared to other studies that have used them.  

  285 
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Table 2: Comparison of study design (satellite data, machine learning model type and number of predictors, study location and 

study period) and performance metrics (mean absolute error, root mean square error, relative percent error, slope, and 

correlation) between our study and previous studies that utilized a ML-based method. NR indicates that the value was not 

reported. 

Study 
Satellite 

data 

Machine 

learning 

model 

(number 

of 

predictors) 

Study 

location 

(time 

period) 

MAE  

[ppbv] 

RMSE  

[ppbv] 

RPE  

[%] 

Slope 

[-] 

Correlation 

[-] 

Our 

study  

OMI SO2 

PCA 

XGBoost 

(5) 

Eastern 

China 

(2015-

2018) 

3.0 5.2 59 0.67 0.75 

Zhang 

et al. 

(2022) 

OMI SO2 

PCA 

LightGBM 

(66) 

Northern 

China  

(2013-

2019) 

NR 4.0 39 NR 0.94 

Yang et 

al. 

(2023b) 

Landsat-8 

visible and 

infrared 

reflectance 

Deep 

neural 

network 

multi-task 

learning 

(9) 

China 

(2019) 
3.5 5.7 47 0.76 0.85 

 290 

 

We performed a permutation importance analysis to assess how each predictor impacted the model predictions. 

Figure 5a indicates that the PBLH and OMI SO2 VCDs are the two most influential predictors followed by emissions and 

wind speeds. Scatterplots between each ML predictor variable and the ML estimated surface SO2 concentrations with 

Spearman rank coefficients (rs) are shown in Figs. 5b-f. The ML-derived SO2 concentrations increase with larger SO2 VCDs 295 

and emissions, as well as decrease with increasing PBLH and wind speeds (Figs. 5b-f). These trends are consistent with the 

expected physical relationships between each variable and surface SO2 concentrations in the real atmosphere. Large OMI 

VCDs and emissions indicating areas of high SO2 loading, and elevated PBLHs and wind speeds lead to mixing and the 
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dilution of SO2. The rs values are small, indicating that the model may be making predictions based on the interactions 

between variables rather than any individual predictor. The small number of predictors used in our model allows us to link 300 

the ML predictions to known atmospheric processes, adding confidence to the model in its ability to accurately estimate the 

surface concentrations. 

 

 

Figure 5: Evaluation of the daily ML-predicted surface concentrations using (a) permutation importance analysis, and scatterplots 305 
showing the ML predictor variables against the ML estimated surface SO2 concentrations for (b) ERA5 PBLH, (c) OMI SO2 

VCDs, (d) CEDS SO2 emissions, (e) ERA5 U-Winds, and (f) ERA5 V-Winds. Each scatterplot is colored by the number of stations 

in each bin and includes the Spearman rank coefficient (rs). 

4 Comparing results from the GEOS-Chem and machine learning methods  

The results from the GEOS-Chem method in Sect. 3.1 were based on the full dataset since the methodology 310 

produces results that are independent of the in situ monitoring data. However, the results from the ML method in Sect. 3.2 

were only based on 10% of the data that was not used for training and reserved for an independent validation. The 

comparison of these results is still important but does not provide a direct comparison of their performance. Here, the GEOS-

Chem and ML methods will be compared using the independent testing dataset (i.e., retained from ML training) to assess the 

relative performance of each method given identical data. First, each technique will be validated at the CNEMC 315 

measurement sites in Sect. 4.1, similar to the analyses in Sect. 3. Then, both methods will be used to create gridded surface 
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SO2 concentrations in Sect. 4.2 to assess how effective both methods are for filling in the gaps of the CNEMC monitoring 

network, one of the main motivations for estimating surface concentrations from satellite data.  

4.1 Performance on independent data 

Scatterplots between the in situ concentrations and estimates of the surface concentrations from both the GEOS-320 

Chem and ML methods for the identical testing dataset are shown in Fig. 6. The surface concentrations estimated by the ML 

model are much closer to the in situ measurements (1:1 line) than the GEOS-Chem method, which is consistent with the 

previous results in Figs. 3-4. For the annual mean concentrations, the ML method had an average slope of 0.69 and 

correlation of 0.77, compared to values of 0.18 and 0.30 from the GEOS-Chem method, respectively (Figs. 6a-d). The ML 

model also outperforms the GEOS-Chem method on the seasonal data averaged over 2015-2018. The average slope and 325 

correlation of 0.64 and 0.73, compared to 0.19 and 0.31, respectively (Figs. 6e-h). The GEOS-Chem method performed 

worse on this smaller dataset compared to the full dataset in Sect. 3.1 due to less temporal averaging, leading to larger 

discrepancies with the in situ measurements. As shown in Fig. S5, there is a smaller decrease in the performance of the ML 

method compared to the GEOS-Chem method when assessing the performance for individual seasons. The slope and 

correlation for the ML method decreased to 0.59 and 0.67, compared to 0.15 and 0.22 for the GEOS-Chem method, 330 

respectively (Fig. S5). Despite the smaller amounts of data in the independent dataset and for individual seasons, the ML 

method still accurately captures the spatial distribution and magnitudes of the surface SO2 concentrations, indicating better 

consistency with the CNEMC measurements than the GEOS-Chem method. 
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 335 

Figure 6: Scatterplots showing the estimated surface SO2 concentrations from the GEOS-Chem method (light blue squares) and 

ML method (dark blue triangles) against the in situ measurements from the independent dataset for (a-d) annual mean 

concentrations for each year in the study period, and (e-h) the 2015-2018 mean concentrations separated by season. Each 

scatterplot includes a linear regression analysis with the best fit line (solid lines), 1:1 line (black dashed line), MAE, RMSE, and 

RPE. 340 

 

Time series of the annual and seasonal mean surface SO2 concentrations from the in situ measurements, and 

estimated concentrations from the GEOS-Chem and ML methods are shown in Figs. 7a-b. The ML estimated concentrations 

were much more accurate than the GEOS-Chem method compared to the CNEMC in situ concentrations. The overall mean 

ML concentrations had an average discrepancy of 5% with the in situ measurements, compared to a 58% discrepancy from 345 

the GEOS-Chem method (Figs. 7a-b). The ML method also captured the same temporal variations as the in situ 

measurements with a 44% decrease in concentrations from 2015-2018, and an average seasonal fluctuation by a factor of 1.9 

(Figs. 7a-b). The GEOS-Chem method also had good agreement in the temporal trends of the in situ measurements with a 

36% decrease from 2015-2018 and a seasonal fluctuation by a factor of 2.4 between the winter and summer, but not as good 

as the ML method (Figs. 7a-b). Despite the similarities in the overall and seasonal variations, the greatest difference between 350 

the time series of the two methods was the magnitude of the concentrations, as shown in Sect. 3. 
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Figure 7: Time series of the surface SO2 concentrations from the GEOS-Chem (CTM) method (light blue squares), ML method 

(dark blue triangles), and CNEMC in situ measurements (red circles) from the independent dataset as (a) annual and (b) seasonal 355 
means, as well as the slopes (pink x’s) and correlations (green plus signs) from the (c) annual and (d) seasonal mean validations 

between the GEOS-Chem (CTM) method (dashed line) and ML method (solid line) with the in situ measurements. Error bars on 

the concentrations represent a 1 standard deviation uncertainty, and error bars on the slopes represent a 95% confidence interval 

based on the standard error of the linear regression fit.  

 360 

To assess how the accuracy of each method changes over time, time series of the slopes and correlations from the 

individual annual and seasonal comparisons between the estimated and in situ surface concentrations (from Fig. S5) are 

shown in Figs. 7c-d. For the entire study period, the performance of the ML method was much more accurate than the 

GEOS-Chem method as indicated by the higher slopes and correlations (Figs. 7c-d). Additionally, the GEOS-Chem method 

suffered from a decrease in accuracy over time alongside declining SO2 concentrations while the ML method remained 365 

stable (Figs. 7c-d). The accuracy of the CTM-based method is highly dependent on noise in the satellite data. Smaller 

datasets with less temporal averaging tend to have more noise, which leads to worse performance. Additionally, as SO2 

loading decreases, it becomes harder to detect from the satellite, introducing additional noise over time. Comparatively, the 

ML method is more resistant to noise in the satellite data. As the SO2 VCDs decreased, the ML predictions became more 

reliant upon meteorological predictors to estimate the surface concentrations, limiting the impact of the noisy satellite data 370 

(Figs. S6a-d). The accuracy of the ML method has a distinct seasonality with generally better performance in the winter and 

worse in the summer (Fig. 7d). The PBLH and OMI SO2 VCDs are dominant predictors in the winter compared to CEDS 
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emissions and PBLH in the summer (Figs. S6e-h). The CEDS emissions are less consistent with the in situ measurements 

than the OMI VCDs with correlations of 0.15 and 0.29, respectively, which may account for the increased discrepancy of the 

ML-derived concentrations during the summer.  375 

In summary, both methods captured the same temporal variations as the in situ measurements, but the ML method 

performed better and had more stable performance over time than the CTM-based method, which had decreasing 

performance due to more noise in the satellite data from decreasing SO2 loading.  

4.2 Comparison of gridded products 

Here, the GEOS-Chem and ML methods will be used to create high-resolution gridded products of surface SO2 380 

concentrations to assess how effective each technique is for filling in the gaps of the CNEMC air quality monitoring 

network. The gridded annual mean surface SO2 concentrations from the ML and GEOS-Chem methods are shown in Fig. 8 

at 0.25° horizontal resolution. Both methods have similar spatial distributions to one another over land with the highest 

concentrations in the North China Plain and lower concentrations elsewhere. Over land, each method also has a spatial 

distribution similar to the retrieved SO2 VCDs from OMI as shown in Fig. S7a-d. Over the oceans, there is disagreement in 385 

the spatial distributions with the ML method producing high concentrations and the CTM method producing low 

concentrations. Since the ML predictions are significantly affected by boundary layer heights (Fig. 5), the model is most 

likely incorrectly associating the low marine boundary layer with areas elevated pollutants typical of low continental 

boundary layers, as shown in Fig. 8. Inaccuracies over the oceans have also been reported in Kang et al. (2021) where ML 

was used to estimate surface concentrations of NO2 and ozone and were attributed to a lack of training data for the ML 390 

model in these locations. Since the ML model was only trained for conditions over land, it is not able to make accurate 

predictions over the ocean or other areas that are different from where the model was trained. As a result, the CTM-based 

method may be more reliable for estimating the surface SO2 concentrations in locations with a lack of surface observations 

where a ML model cannot be trained.  

As shown in Fig. 8, both gridded products captured the decrease in annual mean concentrations from 2015 to 2018 395 

observed at the CNEMC sites. Both methods were also able to capture the seasonal variations in their gridded products with 

the highest concentrations in the winter and lowest concentrations in the summer, as shown in Fig. S8. The seasonal surface 

SO2 concentrations were also still consistent with the OMI SO2 VCDs (Fig. S7e-h). Although it is not possible to validate the 

gridded products, since the ML method had more accurate spatial distributions, temporal variations, and magnitudes than the 

CTM method at the CNEMC sites, the gridded product is likely to be more accurate as well, but only over land. The 400 

unexpected area of elevated concentrations over the oceans exposed a major limitation of the ML method and suggests that 

future work in improving the CTM-based method may be worthwhile, especially for estimating surface SO2 concentrations 

in locations where training data are not available. 

 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

 405 

Figure 8: Maps of the annual mean surface SO2 concentrations in ppbv from the ML method (top row) and GEOS-Chem method 

(bottom row) over the study area at 0.25° horizontal resolution. Each column represents a different year of the study period (from 

left to right: 2015, 2016, 2017, and 2018).  

5 Conclusion and discussion 

We estimated surface SO2 concentrations over eastern China from 2015-2018 using OMI satellite data with two 410 

different methods: the GEOS-Chem model to convert the OMI SO2 VCDs into surface concentrations, and an XGBoost 

model to statistically relate OMI SO2 retrievals, ERA5 meteorology, and CEDS SO2 emissions to in situ surface 

concentrations. We found that the ML method had better performance than the GEOS-Chem method at estimating the 

surface concentrations when validated against in situ measurements from the CNEMC air quality monitoring network. The 

ML method had a discrepancy of ~30% with no significant bias (slope = 0.69), whereas the GEOS-Chem method had a 415 

discrepancy of ~75% with a significant underestimation (slope = 0.24). To our knowledge, this is the first study to directly 

compare the relative performance of the CTM- and ML-based methods for estimating surface SO2 concentrations from 

satellite data.  

Despite the underestimation, the GEOS-Chem method produced surface SO2 concentrations that had similar spatial 

distributions (r = 0.58) and temporal patterns as the CNEMC in situ measurements, similar to previous studies using the 420 

CTM-based method. To obtain a good estimate of the spatial distribution, the CTM method requires averaging data over 

seasonal or annual timescales to reduce the noise in the satellite retrievals, and the underestimation of this method is likely 

due to the coarse resolution of GEOS-Chem smoothing out the SVR near SO2 hotspots. The CTM-based method also 

suffered from decreasing accuracy over time due to decreasing SO2 loading. In addition to lower discrepancies, the ML 
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method outperformed the CTM method in terms of the spatial distribution (r = 0.77) and temporal variations. The success of 425 

the ML method was especially apparent for smaller datasets that have limited temporal averaging and thus higher noise in 

the OMI data, which was also indicated by the accuracy over time. Even though our ML model was only based on five input 

variables, the results were similar to previous studies that used far more predictors. The small number of predictors also 

allowed us to relate the model predictions and input variables to known physical processes such as pollutant emissions and 

dispersion, thus lending more confidence in our ML model as compared with other “black box” ML models. Finally, both 430 

methods were used to create high-resolution gridded products to provide estimates of surface SO2 concentrations in locations 

that do not have access to ground-based air quality monitoring measurements. This analysis exposed a major limitation in the 

ML method where it produced unrealistic spatial distributions of SO2 over the ocean since it was only trained on data from 

over the land. Despite the underestimation of the CTM method, there is still value in using it to estimate surface SO2 

concentrations in locations where there is no training data available for developing ML-based techniques, but future steps 435 

should be taken to decrease the underestimation of this method.  

 In the future, these methods should be applied to higher-resolution satellite data, which may help to improve the 

results. OMI can only detect sources as small as 30 kt yr-1, but newer instruments like the Tropospheric Monitoring 

Instrument (TROPOMI; Veefkind et al., 2012) or can detect sources as small as 8 kt yr-1 (Fioletov et al., 2023). Newer polar 

orbiting satellites like TROPOMI and geostationary satellites like Tropospheric Emissions: Monitoring of Pollution 440 

(TEMPO; Zoogman et al., 2017) may offer future opportunities to estimate surface concentrations of air pollutants at even 

higher resolution. This also may improve the accuracy of both methods, especially if higher-resolution CTMs are also 

utilized. Additionally, this study only focused on SO2, but both methods can also be applied to other air pollutants such as 

NO2, ozone, and particulate matter to see if the relative performance of each method is similar for other species. Since these 

two methods can utilize space-based measurements to fill in the gaps of ground-based air quality networks, investigating 445 

their relative performance as improvements are made to the satellite data, CTMs, and ML models is critical for monitoring 

near-surface air pollution with high accuracy in locations where traditional observations are not possible. 

Code and data availability 

All data used in this work are open source. The OMI PBL SO2 VCDs are available at 

https://doi.org/10.5067/Aura/OMI/DATA2023, and the OMI emission catalogue is available at 450 

https://so2.gsfc.nasa.gov/measures.html. The GEOS-Chem source code is available at 

https://github.com/geoschem/GCClassic, and the GEOS-Chem input data, including the CEDS emission inventory, is 

available at https://geos-chem.s3.amazonaws.com/index.html. The ERA5 meteorology data are available at https://nsf-ncar-

era5.s3.amazonaws.com/index.html. The CNEMC in situ measurements were obtained from http://www.cnemc.cn. The 

XGBoost model was developed using the scikit-learn (https://scikit-learn.org/stable/) and XGBoost 455 
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(https://xgboost.readthedocs.io/en/stable/) Python packages. Finally, all maps were made with Natural Earth via the Cartopy 

Python package (https://scitools.org.uk/cartopy).  

Supplement link 

To be added. 

Author contributions  460 

ZW conducted the data analysis, prepared the paper, and created figures. ZW, CL, FL, and SL contributed to the 

development of the GEOS-Chem analysis in the paper. ZW, CL, SWF, and SL contributed to the development of the 

machine learning analysis in the paper. HZ and JW provided the CNEMC in situ data. All authors provided feedback and 

improvements to the paper. 

Competing interests 465 

The authors declare that they have no conflicts of interest.  

Financial support 

We acknowledge funding support from the National Science Foundation (Award numbers 2209772 and 2107916). 

References 

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, 470 

M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. 

Geophys. Res. Atmos., 106, 23073–23095, doi:10.1029/2001JD000807, 2001. 

Chen, T., and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, Proc. 22nd ACM SIGKDD Int. Conf. Knowl. 

Discov. Data Min., 785–794, doi:10.1145/2939672.2939785, 2016. 

China National Environmental Monitoring Centre (CNEMC): http://www.cnemc.cn, last access: 28 April 2024. 475 

Engdahl, R. B.: A Critical Review of Regulations for the Control of Sulfur Oxide Emissions, J. Air Pollut. Control Assoc., 

23, 364–375, doi:10.1080/00022470.1973.10469782, 1973. 

European Centre for Medium-Range Weather Forecasts (ECMWF): ERA5 Reanalysis (0.25 Degree Latitude-Longitude 

Grid) (Updated monthly), Res. Data Arch. Natl. Cent. Atmos. Res., Comput. Inf. Syst. Lab., doi:10.5065/BH6N-5N20, 2019, 

last access: 2 Mar 2025. 480 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



24 

 

Fan, K., Dhammapala, R., Harrington, K., Lamastro, R., Lamb, B., and Lee, Y.: Development of a Machine Learning 

Approach for Local-Scale Ozone Forecasting: Application to Kennewick, WA, Front. Big Data, 5, 781309, 

doi:10.3389/fdata.2022.781309, 2022. 

Fioletov, V., McLinden, C. A., Griffin, D., Abboud, I., Krotkov, N., Leonard, P. J. T., Li, C., Joiner, J., Theys, N., and Carn, 

S.: Multi-Satellite Air Quality Sulfur Dioxide (SO2) Database Long-Term L4 Global V2, Goddard Earth Sci. Data Inf. Serv. 485 

Cent. (GES DISC), doi:10.5067/MEASURES/SO2/DATA406, accessed: 29 October 2024. 

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Ann. Stat., 29, 1189–1232, 

http://www.jstor.org/stable/2699986, 2001. 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., 

Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, 490 

M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., 

Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., 

de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorol. 

Soc., 146, 1999–2049, doi:10.1002/qj.3803, 2020. 

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., 495 

Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, 

P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community 

Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, doi:10.5194/gmd-11-369-2018, 2018. 

Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C.-K., and Kim, S.: Estimation of surface-level NO2 and O3 

concentrations using TROPOMI data and machine learning over East Asia, Environ. Pollut., 288, 117711, 500 

doi:10.1016/j.envpol.2021.117711, 2021. 

Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., and Bianchi, F.: Atmospheric new particle formation and 

growth: review of field observations, Environ. Res. Lett., 13, 103003, doi:10.1088/1748-9326/aadf3c, 2018. 

Kharol, S. K., McLinden, C. A., Sioris, C. E., Shephard, M. W., Fioletov, V., van Donkelaar, A., Philip, S., and Martin, R. 

V.: OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America, Atmos. Chem. Phys., 505 

17, 5921–5929, doi:10.5194/acp-17-5921-2017, 2017. 

Krotkov, N. A., McClure, B., Dickerson, R. R., Carn, S. A., Li, C., Bhartia, P. K., Yang, K., Krueger, A. J., Li, Z., Levelt,  P. 

F., Chen, H., Wang, P., and Lu, D.: Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China, J. 

Geophys. Res. Atmos., 113, D16S40, doi:10.1029/2007JD008818, 2008. 

Krotkov, N. A., Li, C., and Leonard, P.: OMI/Aura Sulphur Dioxide (SO2) Total Column Daily L2 Global Gridded 0.125 510 

degree x 0.125 degree V3, Goddard Earth Sci. Data Inf. Serv. Cent. (GES DISC), doi:10.5067/Aura/OMI/DATA2023, 

accessed: 03/10/2024, 2014. 

Krzyzanowski, M., and Wojtyniak, B.: Ten-Year Mortality in a Sample of an Adult Population in Relation to Air Pollution, 

J. Epidemiol. Community Health, 36, 262–268, http://www.jstor.org/stable/25566349, 1992. 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



25 

 

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., Dunlea, E. J., and Pinto, J. P.: 515 

Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J. Geophys. 

Res., 113, D16308, doi:10.1029/2007JD009235, 2008. 

Lee, C., Martin, R. V., van Donkelaar, A., Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., Vinnikov, K., 

and Schwab, J. J.: SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based 

(SCIAMACHY and OMI) observations, J. Geophys. Res., 116, D06304, doi:10.1029/2010JD014758, 2011. 520 

Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang, R.: New particle formation in the atmosphere: 

From molecular clusters to global climate, J. Geophys. Res. Atmos., 124, doi:10.1029/2018JD029356, 2019. 

Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mälkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J. O. V., and 

Saari, H.: The Ozone Monitoring Instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093–1101, 

doi:10.1109/TGRS.2006.872333, 2006. 525 

Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A fast and sensitive new satellite SO2 retrieval algorithm based on 

principal component analysis: Application to the ozone monitoring instrument, Geophys. Res. Lett., 40, 6314–6318, 

doi:10.1002/2013GL058134, 2013. 

Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X., Li, Z., and Dickerson, R. R.: 

India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide, Sci. Rep., 7, 14304, 530 

doi:10.1038/s41598-017-14639-8, 2017. 

Li, C., Krotkov, N. A., Leonard, P. J. T., Carn, S., Joiner, J., Spurr, R. J. D., and Vasilkov, A.: Version 2 Ozone Monitoring 

Instrument SO2 product (OMSO2 V2): New anthropogenic SO2 vertical column density dataset, Atmos. Meas. Tech., 13, 

6175–6191, doi:10.5194/amt-13-6175-2020, 2020a. 

Li, C., Krotkov, N. A., Leonard, P., and Joiner, J.: OMI/Aura Sulphur Dioxide (SO2) Total Column 1-orbit L2 Swath 13x24 535 

km V003, Goddard Earth Sci. Data Inf. Serv. Cent. (GES DISC), doi:10.5067/Aura/OMI/DATA2022, accessed: 29 October 

2024, 2020b. 

Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.: Mapping annual mean ground-level PM2.5 

concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States, J. 

Geophys. Res., 109, D22206, doi:10.1029/2004JD005025, 2004. 540 

Lucchesi, R.: File Specification for GEOS FP, GMAO Office Note No. 4, Version 1.2, 61 pp., available at 

http://gmao.gsfc.nasa.gov/pubs/office_notes, 2018. 

McLinden, C. A., Fioletov, V., Boersma, K. F., Kharol, S. K., Krotkov, N., Lamsal, L., Makar, P. A., Martin, R. V., 

Veefkind, J. P., and Yang, K.: Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons 

with surface measurements, Atmos. Chem. Phys., 14, 3637–3656, doi:10.5194/acp-14-3637-2014, 2014. 545 

National Academy of Sciences, Engineering, and Medicine (NASEM): The Future of Atmospheric Chemistry Research: 

Remembering Yesterday, Understanding Today, Anticipating Tomorrow, Washington, DC, The National Academies Press, 

doi:10.17226/23573, 2016. 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



26 

 

National Aeronautics and Space Administration (NASA): README Document for OMSO2: Aura/OMI Sulfur Dioxide 

Level 2 Product, Goddard Earth Sciences Data and Information Services Center (GES DISC), available at 550 

https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMSO2.003/doc/OMSO2Readme_V2.pdf, 2020. 

Nowlan, C. R., Liu, X., Chance, K., Cai, Z., Kurosu, T. P., Lee, C., and Martin, R. V.: Retrievals of sulfur dioxide from the 

Global Ozone Monitoring Experiment 2 (GOME-2) using an optimal estimation approach: Algorithm and initial validation, 

J. Geophys. Res., 116, D18301, doi:10.1029/2011JD015808, 2011.  

Philip, S., Martin, R. V., and Keller, C. A.: Sensitivity of chemistry-transport model simulations to the duration of chemical 555 

and transport operators: A case study with GEOS-Chem v10-01, Geosci. Model Dev., 9, 1683–1695, doi:10.5194/gmd-9-

1683-2016, 2016. 

Seinfeld, J. H., and Pandis, S. N. (3rd Ed.): Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 

Wiley, Hoboken, New Jersey, United States, 874-876, ISBN 9781118947401, 2016. 

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, 560 

Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., 

Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global 

observations of the atmospheric composition for climate, air quality, and ozone layer applications, Remote Sens. Environ., 

120, 70–83, doi:10.1016/j.rse.2011.09.027, 2012. 

Theys, N., De Smelt, I., van Gent, J., Danckaert, T., Wang, T., Hendrick, F., Stavrakou, T., Bauduin, S., Clarisse, L., Li, C., 565 

Krotkov, N., Yu, H., Brenot, H., and Van Roozendael, M.: Sulfur dioxide vertical column DOAS retrievals from the Ozone 

Monitoring Instrument: Global observations and comparison to ground-based and satellite data, J. Geophys. Res. Atmos., 

120, 2470–2491, doi:10.1002/2014JD022657, 2015. 

Wang, Y. and Wang, J.: Tropospheric SO2 and NO2 in 2012-2018: Contrasting views of two sensors (OMI and OMPS) 

from space, Atmospheric Environment, 223, 117214, doi:10.1016/j.atmosenv.2019.117214, 2020a. 570 

Wang, Y., Wang, J., Xu, X., Henze, D. K., Qu, Z., and Yang, K.: Inverse modeling of SO2 and NOx emissions over China 

using multisensory satellite data – Part 1: Formulation and sensitivity analysis, Atmos. Chem. Phys., 20, 6631-6650, 

doi:10.5194/acp-20-6631-2020, 2020b 

Wang, Y., Wang, J., Zhou, M., Henze, D. K., Ge, C., and Wang, W.: Inverse modeling of SO2 and NOx emissions over 

China using multisensory satellite data – Part 2: Downscaling techniques for air quality analysis and forecasts, Atmos. 575 

Chem. Phys., 20, 6651–6670, doi:10.5194/acp-20-6651-2020, 2020c. 

Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M.: Ground-level gaseous pollutants (NO2, SO2, and CO) in China: 

Daily seamless mapping and spatiotemporal variations, Atmos. Chem. Phys., 23, 1511–1532, doi:10.5194/acp-23-1511-

2023, 2023. 

Yang, Q., Kim, J., Cho, Y., Lee, W.-J., Lee, D.-W., Yuan, Q., Wang, F., Zhou, C., Zhang, X., Xiao, X., Guo, M., Guo, Y., 580 

Carmichael, G. R., and Gao, M.: A synchronized estimation of hourly surface concentrations of six criteria air pollutants 

with GEMS data, npj Clim. Atmos. Sci., 6, 94, doi:10.1038/s41612-023-00407-1, 2023a. 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

 

Yang, Q., Yuan, Q., Gao, M., and Li, T.: A new perspective to satellite-based retrieval of ground-level air pollution: 

Simultaneous estimation of multiple pollutants based on physics-informed multi-task learning, Sci. Total Environ., 857, 585 

159542, doi:10.1016/j.scitotenv.2022.159542, 2023b. 

Zhang, S., Mi, T., Wu, Q., Luo, Y., Grieneisen, M. L., Shi, G., Yang, F., and Zhan, Y.: A data-augmentation approach to 

deriving long-term surface SO2 across Northern China: Implications for interpretable machine learning, Sci. Total Environ., 

827, 154278, doi:10.1016/j.scitotenv.2022.154278, 2022. 

Zhang, X., Wang, Z., Cheng, M., Wu, X., Zhan, N., and Xu, J.: Long-term ambient SO2 concentration and its exposure risk 590 

across China inferred from OMI observations from 2005 to 2018, Atmos. Res., 247, 105150, 

doi:10.1016/j.atmosres.2020.105150, 2021. 

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., Hilton, B. B., Nicks, D. K., 

Newchurch, M. J., Carr, J. L., Janz, S. J., Andraschko, M. R., Arola, A., Baker, B. D., Canova, B. P., Chan Miller, C., 

Cohen, R. C., Davis, J. E., Dussault, M. E., Edwards, D. P., Fishman, J., Ghulam, A., González Abad, G., Grutter, M., 595 

Herman, J. R., Houck, J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N. A., Lamsal, L., Li, C., Lindfors, A., 

Martin, R. V., McElroy, C. T., McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O’Sullivan, E. J., Palmer, P. I., Pierce, 

R. B., Pippin, M. R., Saiz-Lopez, A., Spurr, R. J. D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H., 

Wang, J., and Chance, K.: Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transf., 

186, 17–39, doi:10.1016/j.jqsrt.2016.05.008, 2017. 600 

 

https://doi.org/10.5194/egusphere-2025-1735
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.


